Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Viruses ; 14(8)2022 08 21.
Article in English | MEDLINE | ID: covidwho-1997802

ABSTRACT

Epitopes are short amino acid sequences that define the antigen signature to which an antibody or T cell receptor binds. In light of the current pandemic, epitope analysis and prediction are paramount to improving serological testing and developing vaccines. In this paper, known epitope sequences from SARS-CoV, SARS-CoV-2, and other Coronaviridae were leveraged to identify additional antigen regions in 62K SARS-CoV-2 genomes. Additionally, we present epitope distribution across SARS-CoV-2 genomes, locate the most commonly found epitopes, and discuss where epitopes are located on proteins and how epitopes can be grouped into classes. The mutation density of different protein regions is presented using a big data approach. It was observed that there are 112 B cell and 279 T cell conserved epitopes between SARS-CoV-2 and SARS-CoV, with more diverse sequences found in Nucleoprotein and Spike glycoprotein.


Subject(s)
COVID-19 , Viral Vaccines , COVID-19 Vaccines , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
2.
Cell ; 184(25): 6037-6051.e14, 2021 12 09.
Article in English | MEDLINE | ID: covidwho-1520752

ABSTRACT

RNA viruses generate defective viral genomes (DVGs) that can interfere with replication of the parental wild-type virus. To examine their therapeutic potential, we created a DVG by deleting the capsid-coding region of poliovirus. Strikingly, intraperitoneal or intranasal administration of this genome, which we termed eTIP1, elicits an antiviral response, inhibits replication, and protects mice from several RNA viruses, including enteroviruses, influenza, and SARS-CoV-2. While eTIP1 replication following intranasal administration is limited to the nasal cavity, its antiviral action extends non-cell-autonomously to the lungs. eTIP1 broad-spectrum antiviral effects are mediated by both local and distal type I interferon responses. Importantly, while a single eTIP1 dose protects animals from SARS-CoV-2 infection, it also stimulates production of SARS-CoV-2 neutralizing antibodies that afford long-lasting protection from SARS-CoV-2 reinfection. Thus, eTIP1 is a safe and effective broad-spectrum antiviral generating short- and long-term protection against SARS-CoV-2 and other respiratory infections in animal models.


Subject(s)
Capsid Proteins/genetics , Defective Interfering Viruses/metabolism , Virus Replication/drug effects , Administration, Intranasal , Animals , Antiviral Agents/pharmacology , Broadly Neutralizing Antibodies/immunology , Broadly Neutralizing Antibodies/pharmacology , COVID-19 , Capsid Proteins/metabolism , Cell Line , Defective Interfering Viruses/pathogenicity , Disease Models, Animal , Genome, Viral/genetics , Humans , Influenza, Human , Interferons/metabolism , Male , Mice , Mice, Inbred C57BL , Poliovirus/genetics , Poliovirus/metabolism , Respiratory Tract Infections/virology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity
3.
Eur Phys J E Soft Matter ; 44(10): 123, 2021 Oct 06.
Article in English | MEDLINE | ID: covidwho-1455742

ABSTRACT

We present a novel technique to predict binding affinity trends between two molecules from atomistic molecular dynamics simulations. The technique uses a neural network algorithm applied to a series of images encoding the distance between two molecules in time. We demonstrate that our algorithm is capable of separating with high accuracy non-hydrophobic mutations with low binding affinity from those with high binding affinity. Moreover, we show high accuracy in prediction using a small subset of the simulation, therefore requiring a much shorter simulation time. We apply our algorithm to the binding between several variants of the SARS-CoV-2 spike protein and the human receptor ACE2.


Subject(s)
Artificial Intelligence , Models, Molecular , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Humans , Protein Conformation
4.
Sci Rep ; 11(1): 15998, 2021 08 06.
Article in English | MEDLINE | ID: covidwho-1345574

ABSTRACT

COVID-19's high virus transmission rates have caused a pandemic that is exacerbated by the high rates of asymptomatic and presymptomatic infections. These factors suggest that face masks and social distance could be paramount in containing the pandemic. We examined the efficacy of each measure and the combination of both measures using an agent-based model within a closed space that approximated real-life interactions. By explicitly considering different fractions of asymptomatic individuals, as well as a realistic hypothesis of face masks protection during inhaling and exhaling, our simulations demonstrate that a synergistic use of face masks and social distancing is the most effective intervention to curb the infection spread. To control the pandemic, our models suggest that high adherence to social distance is necessary to curb the spread of the disease, and that wearing face masks provides optimal protection even if only a small portion of the population comply with social distance. Finally, the face mask effectiveness in curbing the viral spread is not reduced if a large fraction of population is asymptomatic. Our findings have important implications for policies that dictate the reopening of social gatherings.


Subject(s)
COVID-19/prevention & control , Masks , Physical Distancing , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , COVID-19/transmission , Humans , Pandemics/prevention & control , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL